

Fiber-Reinforced Concrete for Bridge Structures

H. Celik Ozyildirim, Ph.D., P.E. Mary Sharifiasl, MECE

Outline

- Goal: longevity
- Deterioration mechanisms
- Protective measures
- Fiber-reinforced concrete (FRC)
- Field Applications of FRC
- Conclusions

Goal is Longevity! Build to Last!

Innovations in concretes and reinforcement have enabled:

- Improved durability
- Low environmental impact
- Cost-effectiveness
- Minimal inconvenience to traveling public
- Improved safety

Pantheon

CONCRETE IS DURABLE!

Roman concrete, 2,000 years old!

Year 1,002,019

Design and Build it right! Keep it dry!

Infiltration into Concrete

- Deterioration because of water and solutions penetrating through poor quality concrete and cracks:
 - Freezing and thawing
 - ➤ Alkali-aggregate reactions
 - ➤ Sulfate attack
 - Corrosion: if reinforced

Freezing and Thawing Damage

Saturated, non-air entrained

Alkali-Silica Reactions

Water is necessary.

Sulfate Attack

Sulfate solution penetration

Corrosion

 Corrosion is a major distress in reinforced concrete structures exposed to the environment.

Improvements in Concrete

- Low Permeability
 - Supplementary cementitious material (SCM)
 - Low water-cementitious materials ratio
- Low shrinkage
 - Low paste content, shrinkage reducing admixture (SRA)
- Crack resistant: (reduce amount and width)
 - Fibers
- Abrasion resistant
- Good construction practices
 - Proper consolidation and curing

Improvements in Reinforcement

- Corrosion-resistant conventional reinforcement
 - Stainless steel (SS), MMFX2, etc.

- Corrosion-resistant and corrosion-free prestressed reinforcement
 - Carbon Fiber Reinforced Polymer (CFRP) and SS

CFRP Reinforcement

CFRP is corrosion-free.

Cracks

There are two kinds of concrete:

One cracked

One about to crack

Charlie Robson
Former VDOT State Materials Engineer

Cracks

 Occur when tensile stresses exceed the tensile strength of concrete

Causes:

- Volumetric changes: moisture and temperature
- Chemical reactions
- ➤ Loading

Crack Control – FRC

- Synthetic fibers in low amounts, 1.5 lb/yd³
 (0.1%) are used to minimize plastic shrinkage.
- Larger amounts of fibers up to 2% needed for crack control in hardened concrete. The goal is to keep crack width less than 0.1 mm. Such tight cracks resist infiltration of water and solutions.

Crack Control – FRC

- FRC: fiber-reinforced concrete
 - Improve tensile strength
 - Increase ductility
 - Control cracking
- Special FRC
- > ECC: engineered cementitious composite
- > VHPC: very high-performance concrete
- > UHPC: ultra high-performance concrete

Flexural Test - FRC

Early Work with FRC - Lexington

Lexington – FRC 2000

Lexington Crack Survey - FRC

Crack	Control	Fiber
Total Length (ft)	151	59
Average Width (mm)	0.53	0.29

After 5 years

ECC - 2013 on

- Shear Keys
 - Winchester
 - Surry
- Closure Pours
 - I-64 Bridge over Dunlap Creek
- Culvert Repair

PVA

ECC Mixtures

First crack flexural strength at 7 days: 667 psi Max flexural strength at 7 days: 1,140 psi

ECC

Bendable concrete, tight cracks <0.1 mm

ECC

Deflection

Tight cracks (<0.1 mm)

Route 645 Bridge: Shear Keys ECC

Route 645 - Shear Keys - 2013

Non-shrink grout

UHPC

ECC with PVA fibers

After 3 months, only ECC did not leak

ECC – Culvert Repairs – 2017, 2018

Trailer Pump

Finished Repair with ECC

I-64 Dunlap Creek Bridges: 2014, 2015

Link Slab (Closure Pour)

Fiber Reinforcements – I-64

Tight Cracks

VHPC work at Bristol - 2018

The mix had high flow rates but was sticky

VHPC in Block-outs

VHPC work at Sperryville - 2019

VHPC work at Sperryville - 2019

UHPC - Route 624 - 2007

28-d compressive strength \geq 30,000 psi with steam curing

UHPC - Steel Fibers

Brass coated steel fibers; L = 14 mm, diameter = 0.185 mm

UHPC Mixture

UHPC Beams

Plant had twin shaft mixer

Flexural Strength

UHPC - Tight Cracks

1-in-thick beam

New UHPC - 2019

Planetary mixer 28-d compressive strength ≥ 17,000 psi

Flexural Strength – New UHPC

Conclusion

- Fibers provide residual strength after cracking, which limits the size and length of cracks and can be used in shear keys, closure pours, blockouts, and culvert repairs.
- The level of residual strength depends on the type and amount of fibers.
- High residual strengths that exhibit strain and deflection hardening limit cracks widths below 0.1 mm.

Acknowledgements

- FHWA
- VDOT CO
- VDOT Districts
- VTRC
- Industry

Thank You.

